Dr. Ikenna C. Nlebedim is an associate scientist and group leader at Ames Laboratory and the magnet thrust co-lead for the Critical Materials Institute (CMI). He contributes to CMI research efforts on recycling, additive manufacturing, thermomagnetic processing and system levels finite element modeling. He has a Ph.D. from Cardiff University, Cardiff, UK, and an M.Sc. from KTH, Stockholm, Sweden. His research interests include recycling of materials, magnetoelastic and magnetoelastic materials, magnetic non-destructive evaluation, and magnetic systems modeling.
He is a research and development engineer in the Experiment Analysis Group of Nuclear Science and Technology at Idaho National Laboratory. In his present position, he leads in-pile instrumentation development for transient irradiation testing and is a principal investigator for transient testing of metallic fuels. He is an experiment safety and performance analyst for experiments at the Advanced Test Reactor and the Transient Reactor Test Facility. In addition, he is a technical lead for measurement of thermophysical properties of nuclear materials. He has expertise in energy transport in condensed matter, liquids, gases, and material interfaces. He has significant experience in advanced measurements of thermophysical properties of nuclear materials using multi-scaled approaches, including nano-scale measurements using atomic force microscopy, laser-based microscopic photothermal methods, and bench-scale high temperature thermal conductivity techniques. He also has expertise in numerical and commercial finite element analysis. He holds bachelor’s and master’s degrees from Utah State University and a joint doctorate from Utah State University and Universite de Reims Champagne-Ardenne. He is a member of American Nuclear Society (ANS) and American Society of Mechanical Engineers. He was the founding president of the ANS Student Chapter at Utah State University and currently serves as an Executive Committee member for the Material Science and Technology Division of ANS.
He received his bachelor's in chemistry from Reed College in 1990, and his doctorate in chemistry from Harvard University in 1996. He specializes in multi-disciplinary problem solving in the physical sciences and their corresponding engineering disciplines. Over his 22-year research and development (R&D) career, he has developed expertise in physical chemistry, chemical kinetics, atmospheric chemistry, instrumentation, electronics (digital, analog, power, and RF), spectroscopic sensing, lasers, fiber optics and wave guides, classical optics, electro-optics, electromagnetics, electromechanical systems, heat transfer, materials science, mechanical engineering, manufacturing processes, and renewable energy technologies.
He has won four R&D 100 Awards, holds numerous patents, has 10 active licenses on his inventions, and given many invited talks on the subject of serial innovation. In 2015, he was selected by the U.S. Department of Energy as its Inaugural SunShot Innovator in Residence. He invented the Radical-Ion Flow Battery under the SunShot Innovator in Residence Program to address the need for low-cost, highly scalable electrochemical grid storage, and the performance limitations of prior art battery chemistries in this demanding application. His current research portfolio is focused on electrochemical grid storage, the elimination of rare-earth magnets in wind turbines, and semiconductor thermal management (power electronics, CPUs, GPUs).
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.