Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Energy research represents a major focus for BNL over the next decade. We are using a multifaceted approach driven by the unique state-of-the art laboratory facilities and the inter-disciplinary expertise of our scientific staff to solve fundamental questions regarding U.S. energy independence and to translate discoveries into deployable technologies. The laboratory has identified several energy focus areas – including biofuels, complex materials, catalysis, and solar energy.
BNL's one-of-kind user facilities include the National Synchrotron Light Source II NSLS-II, which produces extremely bright beams of x-ray, ultraviolet, and infrared light for scientists exploring materials—including superconductors, catalysts, geological samples, and proteins—to accelerate advances in energy, environmental science, and medicine. Scientists at our Center for Functional Nanomaterials create materials and explore their unique structure and properties at the nanoscale, with a focus on more efficient solar and energy storage materials. And at BNL's Northeast Solar Energy Research Center, where researchers from labs, academia, and industry study test new solar technologies, working to make solar "power plants" more efficient and economical
In addition to fundamental research, the laboratory actively collaborates with industry and other academic institutions to bring the benefits of scientific discoveries to the marketplace. Brookhaven's Office of Strategic Partnerships integrates Brookhaven Lab's industry engagement, technology licensing, and economic development functions to expand the impact of collaborative research and technology commercialization. Strategic Partnerships supports the Laboratory's science mission through identifying, pursuing and managing partnerships with a broad set of private-sector companies, federal agencies, and non-federal entities. For information on licensing and industry.

- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.

CMI Researcher Thomas Lograsso began serving as CMI interim director in November 2019. He had led the CMI Focus Area 2, Developing Substitutes since 2014. Previously he led Focus Area 4, Crosscutting Research while serving as the interim director of The Ames Laboratory. Also at Ames Lab, Tom leads a BES Synthesis & Processing effort on Novel Materials Preparation and Processing Methodology, whose goal is to develop synthesis protocols for new materials including quasicrystals, ferromagnetic shape memory alloys, and those that may contain volatile reactive or toxic components especially in single crystalline form. Often his pioneering synthesis efforts result in the first single crystals of these novel materials to be grown and studied for intrinsic behavior.
Tom is co-inventor of a rare-earth free substitute for the magnetostrictive alloy Terfenol-D (contains the critical elements Tb and Dy) used in high precision machining operations for small engine components and as a ultrasonic driver in petroleum exploration. This iron-based substitute is currently being evaluated for commercialization in energy harvesting applications.
Dr. Lograsso received his education in metallurgical engineering at Michigan Technological University, earning his Ph.D. in 1986. He did postdoctoral training working on the Rensselaer team, developing the Isothermal Dendritic Growth Experiment (IDGE) that flew on the Space Shuttle in the late 1990s. The IDGE tested the fundamental solidification physics of the pattern formation and kinetics of crystal growth in isothermal undercooled melts in growth regimes where gravity driven convection overwhelmed the growth in terrestrial conditions.

Dr. Yao is a theoretical and computational physicist, developing methods, algorithms, and codes to address condensed matter physics and materials science problems. With a degree of B.S. in department of intensive instruction in 2000 and M.S. in physics in 2003 from Nanjing University, China, he obtained his Ph.D. in physics from Iowa State University in 2009. After graduation, he took a postdoc position in Ames Laboratory. He was promoted to assistant scientist in 2011, associate scientist in 2015, and senior theoretical physicist in 2019, with an adjunct faculty position in department of Physics and Astronomy at Iowa State University. He is currently leading projects in the development of quantum computing approaches to solve ground state and dynamical properties of correlated quantum materials within the Gutzwiller quantum-classical embedding framework. He is also a key developer of the Gutzwiller density functional theory and rotationally-invariant Slave-Boson method and software.

Matthew Kramer has been Division Director for Materials Sciences and Engineering (DMSE) since 2014. He is also an adjunct professor of Materials Science and Engineering at Iowa State University. As DMSE director, Kramer oversees budgets, proposal preparation, Materials Preparation Center administration, and Sensitive Instrument Facility oversight. DMSE includes 13 FWPs (BES funded), EFRC CATS, approximately 13 additional DOE funded projects, and a small number of Strategic Partnership Projects. Kramer joined Ames Laboratory in 1988, specializing in the areas Structure and properties of glass forming metallic alloys, aperiodic intermetallic alloys, permanent magnets and high temperature alloys, development of in situ time resolved methods using electron microscopy and high energy X-ray diffraction, analytical electron microscopy, and advanced imaging techniques for understanding rapid solidification. He holds B.S. and M.S degrees in geo mechanics and geology from the University of Rochester and a Ph.D. in geology from Iowa State University.




Dr. Viktor P. Balema is a Senior Scientist at Ames Laboratory. He joint the laboratory in 2016 to lead new materials development and commercialization at Ames’ led DOE consortium (CaloriCool) founded by US Department of Energy’s Advanced Manufacturing Office. His technical expertise comprises development of biologically active compounds, hard and hybrid materials, polymers and chemical recycling.
Before joining Ames Laboratory, Viktor served in various leading roles, including Hard Materials Head and Global R&D Manager, at Sigma-Aldrich Corporation - a major materials supplier to research and commercial markets. Once at Ames Laboratory, Dr. Balema served on the laboratory’s Research Management Team and Technical Advisory Committee of REMADE Institute and contributed to the development of the Strategic Plan for Ames Laboratory.
Scientific expertise of Dr. Balema spans over chemistry of bio-active agents, synthetic materials chemistry as well as upcycling of spent products, including rare earths and polymers. Viktor published over 70 papers, reviews and proceedings in open literature and filed ~15 US and international patents and IP disclosures. He also developed and commercialized numerous proprietary materials that have been offered through diverse business channels.

Ronald Pindak’s research is in condensed matter physics with an emphasis on the use of x-ray scattering techniques to characterize bulk, surface, and interface structures as well as their kinetics and dynamical fluctuations. Pindak worked for 24 years at Bell Laboratories where he achieved the rank of Distinguished Member of the Technical Staff. He has 45 years of research experience with over 100 refereed publications covering work on both soft condensed matter (complex fluids, colloids, polymers) and hard condensed matter thin films such as found in electronic and opto-electronic devices. He has 36 years of experience using synchrotron research facilities and 17 years of experience managing synchrotron facility operations. He currently oversees a suite of state-of-the-art beamlines at NSLS-II that are optimized for coherent, micro-beam, inelastic, resonant, and small/wide angle x-ray scattering.

Dr. Washington currently serves on multiple committees both at SRNL and in the Aiken community. These include the Conduct of R&D safety council, Diversity Board of Directors for SRNS, and the former Board of Directors Chairman and current member for Habitat for Humanity. He is an also an Adjunct Professor at USC Aiken in the chemistry department.
