He is a laboratory fellow and director of the Fuel Cycle Science and Technology Division at Idaho National Laboratory (INL). His primary focus is directing research and development of advanced technologies for spent nuclear fuel recycling and other chemical separation applications. He also serves as the national technical director for the U.S. Department of Energy (DOE) Nuclear Technology Research and Development Material Recovery and Waste Form Development Program and is also the director of the Glenn T. Seaborg Institute at INL. He has 35 years of experience in chemical separation technologies involving spent nuclear fuel and radioactive waste. He holds bachelor’s and master’s degrees in chemical engineering from Montana State University and a doctorate degree in chemical engineering from Khlopin Radium Institute in St. Petersburg, Russia. He has published over 200 journal articles, reports and conference proceedings, and awarded 23 U.S. patents and six Russian patents, as well as received numerous awards, including an R&D 100 Award. He serves on the editorial board for the journal, Solvent Extraction and Ion Exchange. He is a fellow of the American Institute of Chemical Engineers and the American Nuclear Society and the founder of an endowed chemical engineering scholarship at the University of Idaho. He has served on numerous international conference scientific advisory boards and technical program committees.
He is a staff scientist at Idaho National Laboratory (INL) and a recognized expert in materials characterization and instrumentation. He has a doctorate in materials science and condenser matter physics from the University of California, Davis. His work has spanned global and nationwide collaborations. He has worked at premier nanocharacterization facilities at national laboratories and universities and has expert knowledge of scanning transmission electron microscopy, atom probe tomography and electron loss spectroscopy. His primary research interests lie in the investigation of materials and the origins of their physical properties. He has heavily leveraged the use of multidimensional microscopy, diffraction and artificial intelligence to address delays in data access and extraction, which has led to a new frontier in advanced microscopy. At INL, he continues to focus on the development and application of machine and deep learning in order to decipher and decimate information from images, spectra, and diffraction patterns to maximize the effectiveness, efficiency and utility of advanced microscopy. He is an invited academic faculty member and manager for a diverse group of postdoctoral research scientists, graduate students, and technicians across several national laboratories and universities. He is an author of 45 peer-reviewed publications, a recognized reviewer, and a technical contributing member to energy materials research. He was awarded two patents and has three patents pending, including an innovative approach to computational microscopy using machine learning.
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.