Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.


Jonathan Carter is the Associate Laboratory Director for Computing Sciences at Lawrence Berkeley National Laboratory (Berkeley Lab). The Computing Sciences Area at Berkeley Lab encompasses the National Energy Research Scientific Computing Division (NERSC), the Scientific Networking Division (home to the Energy Sciences Network, ESnet) and the Computational Research Division.
Dr. Carter's research interests are in the evaluation of system architectures and algorithms for high-performance computing, and in computational chemistry and physics simulations. Recently he has been engaged in a project to look at computer architectures beyond the end of Moore's Law and has focused on techniques to perform simulations for computational chemistry using newly developed quantum computing test-beds. He brings a unique perspective to his work, formed from using computing resources as a domain scientist, from performing performance analyses of computer architectures, and from his experience in moving large-scale computational systems from idea to reality.
Carter joined Computing Sciences as part of the National Energy Research Scientific Computing (NERSC) Division at the end of 1996, working with a broad range of scientists to optimize applications, transition projects from shared-memory vector systems to massively parallel systems, and providing in-depth consulting for materials scientists and chemists using NERSC. He became group leader of the consulting group at the end of 2005. During his time at NERSC, he led or played a lead role in teams that procured and deployed three of the fastest computing systems in the world.
Areas of expertise: quantum computing, beyond Moore's Law computer architectures, high-performance computing (HPC) / supercomputing, and computational chemistry.

- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.

Nicola Ferrier received her doctorate from Harvard University in 1992. After postdoctoral fellowships at Oxford University and Harvard, she joined the Department of Mechanical Engineering at the University of Wisconsin (UW)-Madison in 1996. She became an associate professor in 2003 and professor in 2009. She received the NSF CAREER award (1997) and the UW Vilas Associates Professorship (1999) and the UW Honored Instructor Award (2009). She joined the Mathematics and Computer Science Division at Argonne in 2013.
Ferrier’s research interests are in the use of computer vision (digital images) to control robots, machinery, and devices, with applications as diverse as medical systems, manufacturing, and projects that facilitate “scientific discovery” (such as her recent project using machine vision and robotics for plant phenotype studies).

Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world – solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Lab’s Machine Learning for Science site for more information.
Berkeley Lab’s advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.


Oak Ridge National Laboratory is the largest U.S. Department of Energy science and energy laboratory, conducting basic and applied research to deliver transformative solutions to compelling problems in energy and security. ORNL's diverse capabilities span a broad range of scientific and engineering disciplines, enabling the Laboratory to explore fundamental science challenges and to carry out the research needed to accelerate the delivery of solutions to the marketplace. ORNL supports DOE's national missions of:
- Scientific discovery—We assemble teams of experts from diverse backgrounds, equip them with powerful instruments and research facilities, and address compelling national problems;
- Clean energy—We deliver energy technology solutions for energy-efficient buildings, transportation, and manufacturing, and we study biological, environmental, and climate systems in order to develop new biofuels and bioproducts and to explore the impacts of climate change;
- Security—We develop and deploy "first-of-a-kind" science-based security technologies to make the world a safer place.
ORNL supports these missions through leadership in four major areas of science and technology:
- Neutrons—We operate two of the world's leading neutron sources, which enable scientists and engineers to gain new insights into materials and biological systems;
- Computing—We accelerate scientific discovery through modeling and simulation on powerful supercomputers, advance data-intensive science, and sustain US leadership in high-performance computing;
- Materials—We integrate basic and applied research to develop advanced materials for energy applications;
