Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Manager, Systems Assessments
Biography
Michael Wang is an Argonne National Laboratory Distinguished Fellow, Senior Scientist, and Director of the Systems Assessment Center of the Energy Systems division. He has been with Argonne since 1993. Dr. Wang’s research areas include:
- Evaluation of energy and environmental impacts of vehicle technologies, transportation fuels, and energy systems
- Assessment of the market potentials of new vehicle and fuel technologies
- Examination of transportation development trends in emerging economies
Michael Wang has led the development and applications of Argonne’s GREET (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) model for life-cycle analysis of advanced vehicle technologies, transportation fuels, and other energy systems. His work in the life-cycle analysis area has been used by government agencies and industries and cited extensively in research and academic fields. As of 2019, there are more than 40,000 registered GREET users worldwide. Dr. Wang has worked closely with governmental agencies, automotive companies, energy companies, universities, research institutions, and nongovernmental organizations (NGOs) in the United States, China, Brazil, Canada, Japan, and Europe to address energy and environmental issues related to the transportation sector and energy systems.
Jointly, Dr. Wang is a faculty associate in the Energy Policy Institute at the University of Chicago and a senior fellow in the Northwestern Argonne Institute of Science and Engineering of Northwestern University. He is a guest professor in China’s Shanghai Jiaotong University. He is an associate editor of Biotechnology for Biofuels and on the editorial boards of Automotive Innovation, Frontiers of Energy and Power Engineering in China, and Mitigation and Adaptation Strategies for Global Changes. He has more than 270 publications.

- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.


.jpg)

Blake Simmons serves as the Chief Scientific and Technology Officer and Vice President of the Deconstruction Division at the US Department of Energy’s Joint BioEnergy Institute (JBEI) in Emeryville. After earning his BS in chemical engineering from the University of Washington, Dr. Simmons continued his studies at Tulane University and received his doctorate in the same field. Dr. Simmons worked as part of the Senior Management team at Sandia National Laboratories for 15 years, most recently serving as the Senior Manager of Advanced Biomanufacturing as well as the Biomass Program Manager. He joined Lawrence Berkeley National Laboratory in February of 2016 as the Division Director of Biological Systems and Engineering. He is an Adjunct Professor at the University California-Berkeley and the University of Queensland in Australia. His expertise includes advanced biofuels, renewable chemicals, biomanufacturing, ionic liquids, abiotic-biotic interfaces, biomass pretreatment, enzyme engineering, biofuel cells, templated nanomaterials, microfluidics, desalination, and biomineralization.


Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world – solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Lab’s Machine Learning for Science site for more information.
Berkeley Lab’s advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.

